11 research outputs found

    The Genetic Landscape and Epidemiology of Phenylketonuria

    Get PDF
    Phenylketonuria (PKU), caused by variants in the phenylalanine hydroxylase (PAH) gene, is the most common autosomal-recessive Mendelian phenotype of amino acid metabolism. We estimated that globally 0.45 million individuals have PKU, with global prevalence 1:23,930 live births (range 1:4,500 [Italy]–1:125,000 [Japan]). Comparing genotypes and metabolic phenotypes from 16,092 affected subjects revealed differences in disease severity in 51 countries from 17 world regions, with the global phenotype distribution of 62% classic PKU, 22% mild PKU, and 16% mild hyperphenylalaninemia. A gradient in genotype and phenotype distribution exists across Europe, from classic PKU in the east to mild PKU in the southwest and mild hyperphenylalaninemia in the south. The c.1241A>G (p.Tyr414Cys)-associated genotype can be traced from Northern to Western Europe, from Sweden via Norway, to Denmark, to the Netherlands. The frequency of classic PKU increases from Europe (56%) via Middle East (71%) to Australia (80%). Of 758 PAH variants, c.1222C>T (p.Arg408Trp) (22.2%), c.1066−11G>A (IVS10−11G>A) (6.4%), and c.782G>A (p.Arg261Gln) (5.5%) were most common and responsible for two prevalent genotypes: p.[Arg408Trp];[Arg408Trp] (11.4%) and c.[1066−11G>A];[1066−11G>A] (2.6%). Most genotypes (73%) were compound heterozygous, 27% were homozygous, and 55% of 3,659 different genotypes occurred in only a single individual. PAH variants were scored using an allelic phenotype value and correlated with pre-treatment blood phenylalanine concentrations (n = 6,115) and tetrahydrobiopterin loading test results (n = 4,381), enabling prediction of both a genotype-based phenotype (88%) and tetrahydrobiopterin responsiveness (83%). This study shows that large genotype databases enable accurate phenotype prediction, allowing appropriate targeting of therapies to optimize clinical outcome.Fil: Hillert, Alicia. No especifĂ­ca;Fil: Anikster, Yair. No especifĂ­ca;Fil: Belanger Quintana, Amaya. No especifĂ­ca;Fil: Burlina, Alberto. No especifĂ­ca;Fil: Burton, Barbara K.. No especifĂ­ca;Fil: Carducci, Carla. No especifĂ­ca;Fil: Chiesa, Ana Elena. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario. Centro de Investigaciones EndocrinolĂłgicas "Dr. CĂ©sar Bergada". Gobierno de la Ciudad de Buenos Aires. Centro de Investigaciones EndocrinolĂłgicas "Dr. CĂ©sar Bergada". FundaciĂłn de EndocrinologĂ­a Infantil. Centro de Investigaciones EndocrinolĂłgicas "Dr. CĂ©sar Bergada"; ArgentinaFil: Christodoulou, John. No especifĂ­ca;Fil: Dordevic, Maja. No especifĂ­ca;Fil: Desviat, Lourdes R.. No especifĂ­ca;Fil: Eliyahu, Aviva. No especifĂ­ca;Fil: Evers, Roeland A.F.. No especifĂ­ca;Fil: Fajkusova, Lena. No especifĂ­ca;Fil: Feillet, Francois. No especifĂ­ca;Fil: Bonfim Freitas, Pedro E.. No especifĂ­ca;Fil: Gizewska, MarĂ­a. No especifĂ­ca;Fil: Gundorova, Polina. No especifĂ­ca;Fil: Karall, Daniela. No especifĂ­ca;Fil: Kneller, Katya. No especifĂ­ca;Fil: Kutsev, Sergey I.. No especifĂ­ca;Fil: Leuzzi, Vincenzo. No especifĂ­ca;Fil: Levy, Harvey L.. No especifĂ­ca;Fil: Lichter Koneck, Uta. No especifĂ­ca;Fil: Muntau, Ania C.. No especifĂ­ca;Fil: Namour, Fares. No especifĂ­ca;Fil: Oltarzewsk, Mariusz. No especifĂ­ca;Fil: Paras, Andrea. No especifĂ­ca;Fil: Perez, BelĂ©n. No especifĂ­ca;Fil: Polak, Emil. No especifĂ­ca;Fil: Polyakov, Alexander V.. No especifĂ­ca;Fil: Porta, Francesco. No especifĂ­ca;Fil: Rohrbach, Marianne. No especifĂ­ca;Fil: Scholl BĂŒrgi, Sabine. No especifĂ­ca;Fil: SpĂ©cola, Norma. No especifĂ­ca;Fil: Stojiljkovic, Maja. No especifĂ­ca;Fil: Shen, Nan. No especifĂ­ca;Fil: Santana da Silva, Luiz C.. No especifĂ­ca;Fil: Skouma, Anastasia. No especifĂ­ca;Fil: van Spronsen, Francjan. No especifĂ­ca;Fil: Stoppioni, Vera. No especifĂ­ca;Fil: Thöny, Beat. No especifĂ­ca;Fil: Trefz, Friedrich K.. No especifĂ­ca;Fil: Vockley, Jerry. No especifĂ­ca;Fil: Yu, Youngguo. No especifĂ­ca;Fil: Zschocke, Johannes. No especifĂ­ca;Fil: Hoffmann, Georg F.. No especifĂ­ca;Fil: Garbade, Sven F.. No especifĂ­ca;Fil: Blau, Nenad. No especifĂ­ca

    The Genetic Landscape and Epidemiology of Phenylketonuria

    Get PDF
    Phenylketonuria (PKU), caused by variants in the phenylalanine hydroxylase (PAH) gene, is the most common autosomal-recessive Mendelian phenotype of amino acid metabolism. We estimated that globally 0.45 million individuals have PKU, with global prevalence 1:23,930 live births (range 1:4,500 [Italy]-1:125,000 [Japan]). Comparing genotypes and metabolic phenotypes from 16,092 affected subjects revealed differences in disease severity in 51 countries from 17 world regions, with the global phenotype distribution of 62% classic PKU, 22% mild PKU, and 16% mild hyperphenylalaninemia. A gradient in genotype and phenotype distribution exists across Europe, from classic PKU in the east to mild PKU in the southwest and mild hyperphenylalaninemia in the south. The c.1241A gt G (p.Tyr414Cys)-associated genotype can be traced from Northern to Western Europe, from Sweden via Norway, to Denmark, to the Netherlands. The frequency of classic PKU increases from Europe (56%) via Middle East (71%) to Australia (80%). Of 758 PAH variants, c.1222C gt T (p.Arg408Trp) (22.2%), c.1066-11G gt A (IVS10-11G gt A) (6.4%), and c.782G gt A (p.Arg261Gln) (5.5%) were most common and responsible for two prevalent genotypes: p.[Arg408Trp];[Arg408Trp] (11.4%) and c.[1066-11G gt A];[1066-11G gt A] (2.6%). Most genotypes (73%) were compound heterozygous, 27% were homozygous, and 55% of 3,659 different genotypes occurred in only a single individual. PAH variants were scored using an allelic phenotype value and correlated with pre-treatment blood phenylalanine concentrations (n = 6,115) and tetrahydrobiopterin loading test results (n = 4,381), enabling prediction of both a genotype-based phenotype (88%) and tetrahydrobiopterin responsiveness (83%). This study shows that large genotype databases enable accurate phenotype prediction, allowing appropriate targeting of therapies to optimize clinical outcome

    Luminal expression of cubilin is impaired in Imerslund-GrÀsbeck syndrome with compound AMN mutations in intron 3 and exon 7

    No full text
    Juvenile megaloblastic anaemia 1 (OMIM # 261100) is a rare autosomic disorder characterized by selective cobalamin mal-absorption and inconstant proteinuria produced by mutations in either CUBN or AMN genes. Amnionless, the gene product of AMN, is a transmembrane protein that binds tightly to the N-terminal end of cubilin, the gene product of CUBN. Cubilin binds to intrinsic factor-cobalamin complex and is expressed in the distal intestine and the proximal renal tubule. We report a compound AMN heterozygosity with c.742C>T, p.Gln248X and c.208-2A>G mutations in 2 siblings that led to premature termination codon in exon 7 and exon 6, respectively. It produced a dramatic decrease in receptor activity in urine, despite absence of CUBN mutation and normal affinity of the receptor for intrinsic factor binding. Heterozygous carriers for c.742T and c.208-2G had no pathological signs. These results indicate that amnionless is essential for the correct luminal expression of cubilin in humans

    Molecular and cellular effects of vitamin B12 in brain, myocardium and liver through its role as co-factor of methionine synthase

    No full text
    International audienceVitamin B12 (cobalamin, cbl) is a cofactor of methionine synthase (MTR) in the synthesis of methionine, the precursor of the universal methyl donor S-Adenosylmethionine (SAM), which is involved in epigenomic regulatory mechanisms. We have established a neuronal cell model with stable expression of a transcobalamin–oleosin chimer and subsequent decreased cellular availability of vitamin B12, which produces reduced proliferation, increased apoptosis and accelerated differentiation through PP2A, NGF and TACE pathways. Anti-transcobalamin antibody or impaired transcobalamin receptor expression produce also impaired proliferation in other cells. Consistently, the transcription, protein expression and activity of MTR are increased in proliferating cells of skin and intestinal epitheliums, in rat intestine crypts and in proliferating CaCo2 cells, while MTR activity correlates with DNA methylation in rat intestine villi. Exposure to nitrous oxide in animal models identified impairment of MTR reaction as the most important metabolic cause of neurological manifestations of B12 deficiency. Early vitamin B12 and folate deprivation during gestation and lactation of a ‘dam-progeny’ rat model developed in our laboratory is associated with long-lasting disabilities of behavior and memory capacities, with persisting hallmarks related to increased apoptosis, impaired neurogenesis and altered plasticity. We found also an epigenomic deregulation of energy metabolism and fatty acids beta-oxidation in myocardium and liver, through imbalanced methylation/acetylation of PGC-1alpha and decreased expression of SIRT1. These nutrigenomic effects display similarities with the molecular mechanisms of fetal programming. Beside deficiency, B12 loading increases the expression of MTR through internal ribosome entry sites (IRES) and down-regulates MDR-1 gene expression. In conclusion, vitamin B12 influences cell proliferation, differentiation and apoptosis in brain. Vitamin B12 and folate combined deficiency impairs fatty acid oxidation and energy metabolism in liver and heart through epigenomic mechanisms related to imbalanced acetylation/methylation. Some but not all of these effects reflect the upstream role of vitamin B12 in SAM synthesis

    Plasma mSEPT9: A Novel Circulating Cell-free DNA-Based Epigenetic Biomarker to Diagnose Hepatocellular Carcinoma

    No full text
    Summary: Background: Patients with cirrhosis are at high risk of hepatocellular carcinoma (HCC). The SEPT9 gene is a key regulator of cell division and tumor suppressor whose hypermethylation is associated with liver carcinogenesis. The primary aim of this study was to evaluate the diagnostic accuracy of a PCR-based assay for the analysis of SEPT9 promoter methylation in circulating cell-free DNA (mSEPT9) for diagnosing HCC among cirrhotic patients. Methods: We report two phase II biomarker studies that included cirrhotic patients with or without HCC from France (initial study) and Germany (replication study). All patients received clinical and biological evaluations, and liver imaging according to current recommendations. The primary outcome was defined as the presence of HCC according to guidelines from the American Association for the Study of Liver Diseases. The diagnosis of HCC was confirmed by abdominal contrast-enhanced computed tomography scan and systematically discussed in a multidisciplinary consultation meeting. HCC-free cirrhotic patients were recruited if the screening abdominal ultrasound showed no evidence of HCC at the time of blood sampling for the mSEPT9 test and on the next visit six months later. The adjudicating physicians were blinded to patient results associated with the mSEPT9 test. Findings: We included 289 patients with cirrhosis (initial: 186; replication: 103), among whom 98 had HCC (initial: 51; replication: 47). The mSEPT9 test exhibited high diagnostic accuracy for HCC diagnosis, with an area under the receiver operating characteristic curve (AUROC) of 0.944 (0.900–0.970, p < 0.0001) in the initial study (replication: 0.930 [0.862–0.971, p < 0.0001]; meta-analysis: AUROC = 0.940 [0.910–0.970, p < 0.0001], no heterogeneity: I2 = 0%, p = 0.67; and no publication bias). In multivariate logistic regression analysis, the number of positive mSEPT9 triplicates was the only independent variable significantly associated with HCC diagnosis (initial: OR = 6.30, for each mSEPT9 positive triplicate [2.92–13.61, p < 0.0001]; replication: OR = 6.07 [3.25–11.35, p < 0.0001]; meta-analysis: OR = 6.15 [2.93–9.38, p < 0.0001], no heterogeneity: I2 = 0%, p = 0.95; no publication bias). AUROC associated with the discrimination of the logistic regression models in initial and validation studies were 0.969 (0.930–0.989) and 0.942 (0.878–0.978), respectively, with a pooled AUROC of 0.962 ([0.937–0.987, p < 0.0001], no heterogeneity: I2 = 0%, p = 0.36; and no publication bias). Interpretation: Among patients with cirrhosis, the mSEPT9 test constitutes a promising circulating epigenetic biomarker for HCC diagnosis at the individual patient level. Future prospective studies should assess the mSEPT9 test in the screening algorithm for cirrhotic patients to improve risk prediction and personalized therapeutic management of HCC. Keywords: Cirrhosis, Hepatocellular carcinoma, Circulating cell-free DNA-based epigenetic biomarker, DNA methylation, mSEPT

    Environmental influence on the worldwide prevalence of a 776C→G variant in the transcobalamin gene (TCN2)

    No full text
    Background: A 776C→G variant (dbSNP ID: rs1801198) in the transcobalamin gene (TCN2; MIM# 275350) decreases the cellular and plasma concentration of transcobalamin and thereby influences the cellular availability of vitamin B12. Objective: To evaluate the worldwide prevalence of this variant and its association with homocysteine plasma level. Methods: The study was performed in 1433 apparently healthy subjects, including Afro-Americans and Afro-Africans and in 251 Afro-Africans participants with severe malaria. Results: The frequencies of the 776G allele were the highest in China (0.607; 95% Cl 0.554 to 0.659), low in West Africa (BĂ©nin and Togo, 0.178; 0.154 to 0.206), and intermediate in France (0.445; 0.408 to 0.481), Italy (0.352; 0.299 to 0.409), Morocco (0.370; 0.300 to 0.447) and Mexico (0.374; 0.392 to 0.419). The 776G genotype was more frequent in Afro-Americans from New York (16.7; 8.4 to 30.7) and in Afro-African patients with severe malaria (6.0%; 95% Cl 3.7 to 9.6) than in healthy Afro-African volunteers (p= 0.0004 and p= 0.033, respectively), while no difference was observed for MTHFR 677TT and 677T alleles. A disequilibrium of TCN2 genotype distribution was recorded in patients with severe malaria, with a twofold higher GG genotype than expected (p=0.010). An association between the TCN2 polymorphism and homocysteine was observed only in Mexico and France, the two countries with the highest rate of low plasma concentration of vitamin B12 (<100 p

    Long-term ACE Inhibitor/ARB Use Is Associated With Severe Renal Dysfunction and Acute Kidney Injury in Patients With Severe COVID-19: Results From a Referral Center Cohort in the Northeast of France

    No full text
    International audienceBackground: In patients with severe coronavirus disease 2019 (COVID-19), data are scarce and conflicting regarding whether chronic use of angiotensin-converting enzyme inhibitor (ACEI) or angiotensin receptor blocker (ARB) influences disease outcomes. In patients with severe COVID-19, we assessed the association between chronic ACEI/ARB use and the occurrence of kidney, lung, heart, and liver dysfunctions and the severity of the inflammatory reaction as evaluated by biomarkers kinetics, and their association with disease outcomes.Methods: We performed a retrospective longitudinal cohort study on consecutive patients with newly diagnosed severe COVID-19. Independent predictors were assessed through receiver operating characteristic analysis, time-series analysis, logistic regression analysis, and multilevel modeling for repeated measures.Results: On the 149 patients included in the study 30% (44/149) were treated with ACEI/ARB. ACEI/ARB use was independently associated with the following biochemical variations: phosphorus >40 mg/L (odds ratio [OR], 3.35, 95% confidence interval [CI], 1.83-6.14), creatinine >10.1 mg/L (OR, 3.22, 2.28-4.54), and urea nitrogen (UN) >0.52 g/L (OR, 2.65, 95% CI, 1.89-3.73). ACEI/ARB use was independently associated with acute kidney injury stage ≄1 (OR, 3.28, 95% CI, 2.17-4.94). The daily dose of ACEI/ARB was independently associated with altered kidney markers with an increased risk of +25 to +31% per each 10 mg increment of lisinopril-dose equivalent. In multivariable multilevel modeling, UN >0.52 g/L was independently associated with the risk of acute respiratory failure (OR, 3.54, 95% CI, 1.05-11.96).Conclusions: Patients chronically treated with ACEI/ARB who have severe COVID-19 are at increased risk of acute kidney injury. In these patients, the increase in UN associated with ACEI/ARB use could predict the development of acute respiratory failure

    Genotype-phenotype associations in French patients with phenylketonuria and importance of genotype for full assessment of tetrahydrobiopterin responsiveness

    Get PDF
    International audienceBACKGROUND: Mutations in Phenylalanine Hydroxylase (PAH) gene cause phenylketonuria. Sapropterin (BH4), the enzyme cofactor, is an important therapeutical strategy in phenylketonuria. However, PAH is a highly polymorphic gene and it is difficult to identify BH4-responsive genotypes. We seek here to improve prediction of BH4-responsiveness through comparison of genotypes, BH4-loading test, predictions of responsiveness according to the literature and types and locations of mutations.METHODS: A total of 364 French patients among which, 9 % had mild hyperphenylalaninemia, 17.7 % mild phenylketonuria and 73.1 % classical phenylketonuria, benefited from a 24-hour BH4-loading test and had the PAH gene sequenced and analyzed by Multiplex Ligation Probe Amplification.RESULTS: Overall, 31.6 % of patients were BH4-responsive. The number of different mutations found was 127, including 26 new mutations. The mutations c.434A \textgreater T, c.500A \textgreater T, c.529G \textgreater C, c.1045 T \textgreater G and c.1196 T \textgreater C were newly classified as being BH4-responsive. We identified 261 genotypes, among which 46 were newly recognized as being BH4-responsive. Even though patients carry 2 responsive alleles, BH4-responsiveness cannot be predicted with certainty unless they present mild hyperphenylalaninemia. BH4-responsiveness cannot be predicted in patients carrying one responsive mutation only. In general, the milder the phenotype is, the stronger the BH4-response is. Almost exclusively missense mutations, particularly in exons 12, 11 and 8, are associated with BH4-responsiveness and any other type of mutation predicts a negative response.CONCLUSIONS: This study is the first of its kind, in a French population, to identify the phenotype associated with several combinations of PAH mutations. As others, it highlights the necessity of performing simultaneously BH4 loading test and molecular analysis in monitoring phenylketonuria patient

    Population and evolutionary genetics of the PAH locus to uncover overdominance and adaptive mechanisms in phenylketonuria: Results from a multiethnic study

    No full text
    International audienceBackground: Phenylketonuria (PKU) is the most common inborn error of amino acid metabolism in Europe. The reasons underlying the high prevalence of heterozygous carriers are not clearly understood. We aimed to look for pathogenic PAH variant enrichment according to geographical areas and patients’ ethnicity using a multiethnic nationwide cohort of patients with PKU in France. We subsequently appraised the population differentiation, balancing selection and the molecular evolutionary history of the PAH locus.Methods: The French nationwide PKU study included patients who have been referred at the national level to the University Hospital of Nancy, and for whom a molecular diagnosis of phenylketonuria was made by Sanger sequencing. We performed enrichment analyses by comparing alternative allele frequencies using Fisher's exact test with Bonferroni adjustment. We estimated the amount of genetic differentiation among populations using Wright's fixation index (Fst). To estimate the molecular evolutionary history of the PAH gene, we performed phylogenetic and evolutionary analyses using whole-genome and exome-sequencing data from healthy individuals and non-PKU patients, respectively. Finally, we used exome-wide association study to decipher potential genetic loci associated with population divergence on PAH.Findings: The study included 696 patients and revealed 132 pathogenic PAH variants. Three geographical areas showed significant enrichment for a pathogenic PAH variant: North of France (p.Arg243Leu), North-West of France (p.Leu348Val), and Mediterranean coast (p.Ala403Val). One PAH variant (p.Glu280Gln) was significantly enriched among North-Africans (OR = 23·23; 95% CI: 9·75-55·38). PAH variants exhibiting a strong genetic differentiation were significantly enriched in the 'Biopterin_H' domain (OR = 6·45; 95% CI: 1·99-20·84), suggesting a balancing selection pressure on the biopterin function of PAH. Phylogenetic and timetree analyses were consistent with population differentiation events on European-, African-, and Asian-ancestry populations. The five PAH variants most strongly associated with a high selection pressure were phylogenetically close and were located within the biopterin domain coding region of PAH or in its vicinity. Among the non-PAH loci potentially associated with population divergence, two reached exome-wide significance: SSPO (SCO-spondin) and DBH (dopamine beta-hydroxylase), involved in neuroprotection and metabolic adaptation, respectively.Interpretation: Our data provide evidence on the combination of evolutionary and adaptive events in populations with distinct ancestries, which may explain the overdominance of some genetic variants on PAH
    corecore